Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 10: 1480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974177

RESUMO

Here, we present a modified in vitro end-joining (EJ) assay to quantify EJ capacity, accuracy as well as pathway switch to alternative end-joining (Alt-EJ) or single strand annealing (SSA). A novel transformation assay was established to specifically measure circular repair products, which correlate with classical EJ efficiency. The EJ assay was validated using EJ-deficient mammalian cell lines (Ku80, DNA-PKcs, LigIV, or XRCC4 mutants). A pathway switch to Alt-EJ and SSA was seen exclusively in Ku-deficient cells. Circular EJ product formation correlated with cell survival and DSB repair capacity after X-irradiation. Investigation of 14 HNSCC cell lines revealed differences in the total EJ capacity but a broader variation in the amount of circular repair products. Sequencing of repair junctions in HNSCC cells demonstrated a predominance of high-fidelity EJ and an avoidance of both Alt-EJ and SSA. A significant correlation was observed between the amount of circular repair products, repair of IR-induced DSB and radiosensitivity. Collectively, these data indicate that the presented in vitro-EJ-assay can not only estimate the repair capacity of cancer cells to enable the stratification into radiosensitive or radioresistant, but can also identify repair pathway deregulation such as a switch to Alt-EJ or SSA, which enables tumor targeting.

2.
Radiother Oncol ; 151: 134-140, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717362

RESUMO

BACKGROUND AND PURPOSE: HPV positive (pos.) HNSCC cells are significantly more radiosensitive to photon irradiation as compared to HPV negative (neg.) cells. Functionally, this is considered to result from a reduced DSB repair capacity. It was now tested, whether such a difference is also observed when using carbon ion (12C) irradiation. MATERIAL AND METHODS: Five HPV pos. and five HPV neg. HNSCC cell lines were irradiated with photons or 12C-ions using 2D or 3D cell culture conditions. Clonogenic survival was determined by colony formation assay and DSB repair by immunofluorescence using co-staining of γH2AX and 53BP1 foci. RESULTS: The pronounced difference in radiosensitivity known for these two entities when exposed to photons in 2D cell culture, was reduced when treated under 3D conditions. Irradiation with 12C-ions strongly enhanced cell killing, whereby increase was more pronounced for the HPV neg. when compared to the HPV pos. cell line (RBE = 2.81 vs. 2.14). As a consequence, after 12C-irradiation clonogenic survival was almost identical for the two entities as was demonstrated for all cell lines at a dose of 3 Gy. In line with this, the significant difference in DSB repair capacity between HPV pos. and neg. HNSCC cells, as seen after photon irradiation, was abrogated after 12C-irradiation. CONCLUSION: While HPV pos. cells are significantly more radiosensitive to photons than HPV neg. cells, no significant difference was seen after 12C-irradiation. This needs to be considered when planning new clinical protocols for the treatment of HPV neg. and pos. tumors with 12C-ions.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Carbono , Linhagem Celular Tumoral , Reparo do DNA , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Fótons , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço
3.
Transl Oncol ; 12(3): 417-425, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30554133

RESUMO

Human papillomavirus (HPV) associated squamous cell carcinomas of the head and neck region (HPV+ HNSCCs) harbor diverging biological features as compared to classical noxa-induced (HPV-) HNSCC. One striking difference between subtypes is that the tumor suppressor gene TP53 is usually not mutated in HPV+ HNSCCs. However, p53 is inhibited by viral oncoprotein E6, leading to premature proteasomal degradation. We asked whether bortezomib (BZM), a clinically approved inhibitor of the proteasome, can functionally restore p53 and investigated in how far this will result in an enhanced radio- or chemosensitivity of HPV+ HNSCC cell lines. For all four HPV+ cell lines tested, BZM led to functional restoration of p53 and transactivation of downstream protein p21. In HPV+ cells, BZM also restored the radiation-induced p53/p21 transactivation. Consistently, in HPV+ cells, a restored G1 arrest as well as enhanced apoptosis were seen when BZM was given prior to irradiation (IR) or cisplatin (CDDP). BZM alone reduced the clonogenic survival of both HPV- and HPV+ cells. However, if BZM was combined with IR or CDDP, BZM did not significantly enhance radio- or chemosensitivity of HPV+ or HPV- HNSCC cell lines.

4.
Oncotarget ; 8(62): 105170-105183, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29285242

RESUMO

At present, advanced stage human Papillomavirus (HPV) negative and positive head and neck squamous cell carcinoma (HNSCC) are treated by intense multimodal therapy that includes radiochemotherapy, which are associated with relevant side effects. Patients with HPV positive tumors possess a far better prognosis than those with HPV negative cancers. Therefore, new therapeutic strategies are needed to improve the outcome especially of the latter one as well as quality of life for all HNSCC patients. Here we tested whether roscovitine, an inhibitor of cyclin-dependent kinases (CDKs), which hereby also blocks homologous recombination (HR), can be used to enhance the radiation sensitivity of HNSCC cell lines. In all five HPV negative and HPV positive cell lines tested, roscovitine caused inhibition of CDK1 and 2. Surprisingly, all HPV positive cell lines were found to be defective in HR. In contrast, HPV negative strains demonstrated efficient HR, which was completely suppressed by roscovitine. In line with this, for HPV negative but not for HPV positive cell lines, treatment with roscovitine resulted in a pronounced enhancement of the radiation-induced G2 arrest as well as a significant increase in radiosensitivity. Due to a defect in HR, all HPV positive cell lines were efficiently radiosensitized by the PARP-1 inhibitor olaparib. In contrast, in HPV negative cell lines a significant radiosensitization by olaparib was only achieved when combined with roscovitine.

5.
PLoS One ; 7(10): e47185, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110060

RESUMO

Radiotherapy is a powerful cure for several types of solid tumours, but its application is often limited because of severe side effects in individual patients. With the aim to find biomarkers capable of predicting normal tissue side reactions we analysed the radiation responses of cells from individual head and neck tumour and breast cancer patients of different clinical radiosensitivity in a multicentric study. Multiple parameters of cellular radiosensitivity were analysed in coded samples of peripheral blood lymphocytes (PBLs) and derived lymphoblastoid cell lines (LCLs) from 15 clinical radio-hypersensitive tumour patients and compared to age- and sex-matched non-radiosensitive patient controls and 15 lymphoblastoid cell lines from age- and sex- matched healthy controls of the KORA study. Experimental parameters included ionizing radiation (IR)-induced cell death (AnnexinV), induction and repair of DNA strand breaks (Comet assay), induction of yH2AX foci (as a result of DNA double strand breaks), and whole genome expression analyses. Considerable inter-individual differences in IR-induced DNA strand breaks and their repair and/or cell death could be detected in primary and immortalised cells with the applied assays. The group of clinically radiosensitive patients was not unequivocally distinguishable from normal responding patients nor were individual overreacting patients in the test system unambiguously identified by two different laboratories. Thus, the in vitro test systems investigated here seem not to be appropriate for a general prediction of clinical reactions during or after radiotherapy due to the experimental variability compared to the small effect of radiation sensitivity. Genome-wide expression analysis however revealed a set of 67 marker genes which were differentially induced 6 h after in vitro-irradiation in lymphocytes from radio-hypersensitive and non-radiosensitive patients. These results warrant future validation in larger cohorts in order to determine parameters potentially predictive for clinical radiosensitivity.


Assuntos
Biomarcadores/análise , Tolerância a Radiação/fisiologia , Células Cultivadas , Ensaio Cometa , Dano ao DNA/fisiologia , Relação Dose-Resposta à Radiação , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Radiação Ionizante
6.
Apoptosis ; 14(2): 226-35, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19142732

RESUMO

In the present study, the predictive value of ionising radiation (IR)-induced cell death was tested in peripheral blood lymphocytes (PBLs) and their corresponding Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) in an interlaboratory comparison. PBLs and their corresponding LCLs were derived from 15 tumour patients, that were considered clinically radiosensitive based on acute side-effects, and matched controls. Upon coding of the samples, radiosensitivity of the matched pairs was analysed in parallel in three different laboratories by assessing radiation-induced apoptotic and necrotic cell death using annexin V. All participating laboratories detected a dose-dependent increase of apoptosis and necrosis in the individual samples, to a very similar extent. However, comparing the mean values of apoptotic and necrotic levels derived from PBLs of the radiosensitive cohort with the mean values of the control cohort did not reveal a significant difference. Furthermore, within 15 matched pairs, no sample was unambiguously and independently identified by all three participating laboratories to demonstrate in vitro hypersensitivity that matched the clinical hypersensitivity. As has been reported previously, apoptotic and necrotic cell death is barely detectable in immortalised LCL derivatives using low doses of IR. Concomitantly, the differences in apoptosis or necrosis levels found in primary cells of different individuals were not observed in the corresponding LCL derivatives. All participating laboratories concordantly reasoned that, with the methods applied here, IR-induced cell death in PBLs is unsuitable to unequivocally predict the individual clinical radiosensitivity of cancer patients. Furthermore, LCLs do not reflect the physiological properties of the corresponding primary blood lymphocytes with regard to IR-induced cell death. Their value to predict clinical radiosensitivity is thus highly questionable.


Assuntos
Tolerância a Radiação/efeitos da radiação , Idoso , Morte Celular/efeitos da radiação , Linhagem Celular , Relação Dose-Resposta à Radiação , Feminino , Citometria de Fluxo , Humanos , Linfócitos/patologia , Linfócitos/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Necrose , Radiação Ionizante , Radioterapia/efeitos adversos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...